

Mahidol University Degree Profile

Bachelor's Degree Program			
1. Program Title			
(In Thai)	หลักสูตรวิทยาศาสตรบัณฑิต สาขาวิชาวัสดุศาสตร์และวิศวกรรมนาโน (หลักสูตรนานาชาติ)		
(In English)	Bachelor of Science Program in Materials Science and Nano Engineering		
	(International Program)		
2. Degree Offered			
(In Thai)	วิทยาศาสตรบัณฑิต (วัสดุศาสตร์และวิศวกรรมนาโน)		
(In English)	Bachelor of Science (Materials Science and Nano Engineering)		
General informa	tion of the program		
Type of program		Bachelor's Degree (International Program),	
		Academic Program	
Total credits required		Plan A - no less than 133 credits of courses taken while	
		studying at Faculty of Science, Mahidol University	
		(MUSC).	
		Plan B - no less than 83 credits of courses taken while	
		studying at Faculty of Science, Mahidol University	
		(MUSC) no less than 96 credits taken while	
		studying at University of Technology Sydney	
		(equivalent to 53 Mahidol credits)	
Studying duration / Program cycle		4-Year Program	
The program's st	tatus and opening	1. Revised Program 2019	
schedule		2. Program start: Semester I Academic Year 2019	
Degree offered		One degree of one major	
Degree-granting Institutions (MOU		Mahidol University, Thailand	
with other institutions)			
Organization certifying the standards		-	

-

Faculty of Science School of Materials Science and Innovation

Specific information of the program			
Purpose / Goals / Objectives	Goals		
	To educate and provide certified bachelor-degree for		
	graduates, who meet the specific requirements of the science-		
	based National Qualifications Framework, with the insightful		
	understanding of theories and applications of materials science		
	and Nano engineering frontier together with innovation		
	perspectives. The graduates will be able to possess four MU		
	graduated attributes (i.e., T-shaped (having knowledge in		
	breadth and depth, globally talented, socially contributing,		
	and entrepreneurially minded), which make them well-		
	qualified for the employment in highly competitive		
	organizations.		
	Objectives		
	To produce graduates who have the characteristics,		
	knowledge and skills as follows:		
	1. integrate and apply knowledge in materials science,		
	nanoscale science, technology, and related sciences to		
	address current and future industrial needs.		
	2. demonstrate technical skills for using instruments and		
	planning and development of projects involved in		
	manufacturing and service industries.		

Distinctive features	1.	This program is designed to develop students via learning
		by doing approach. Students will join world-class research
		laboratories from a second year onward. Students will
		have 1 full semester to carry out advanced research
		project and 1 full semester for industrial internship. This
		process will develop various skills for students including
		hand-on experience with various instruments, problem
		solving, creative thinking and innovation and team work.
	2.	This program also provides opportunity for students to
		have working/studying experience abroad through
		doubled degree with University of Technology of Sydney
Educational system	Semester System	
Graduates' advancement		
Career opportunities	1.	Most graduates go into a range of employment in leading
Career opportunities	1.	Most graduates go into a range of employment in leading industries such as oil and gas, automotive, manufacturing,
Career opportunities	1.	Most graduates go into a range of employment in leading industries such as oil and gas, automotive, manufacturing, pharmaceuticals, jewelry, ceramics, glass, paints, polymers,
Career opportunities	1.	Most graduates go into a range of employment in leading industries such as oil and gas, automotive, manufacturing, pharmaceuticals, jewelry, ceramics, glass, paints, polymers, metals, etc.
Career opportunities	1. 2.	Most graduates go into a range of employment in leading industries such as oil and gas, automotive, manufacturing, pharmaceuticals, jewelry, ceramics, glass, paints, polymers, metals, etc. Jobs are available in many sectors such product/process
Career opportunities	1.	Most graduates go into a range of employment in leading industries such as oil and gas, automotive, manufacturing, pharmaceuticals, jewelry, ceramics, glass, paints, polymers, metals, etc. Jobs are available in many sectors such product/process development scientist, materials engineer, manufacturing
Career opportunities	1.	Most graduates go into a range of employment in leading industries such as oil and gas, automotive, manufacturing, pharmaceuticals, jewelry, ceramics, glass, paints, polymers, metals, etc. Jobs are available in many sectors such product/process development scientist, materials engineer, manufacturing system engineer, quality manager, project manager,
Career opportunities	1.	Most graduates go into a range of employment in leading industries such as oil and gas, automotive, manufacturing, pharmaceuticals, jewelry, ceramics, glass, paints, polymers, metals, etc. Jobs are available in many sectors such product/process development scientist, materials engineer, manufacturing system engineer, quality manager, project manager, technical sale engineer, etc.
Career opportunities	1. 2. 3.	Most graduates go into a range of employment in leading industries such as oil and gas, automotive, manufacturing, pharmaceuticals, jewelry, ceramics, glass, paints, polymers, metals, etc. Jobs are available in many sectors such product/process development scientist, materials engineer, manufacturing system engineer, quality manager, project manager, technical sale engineer, etc. Graduates can work as research assistant in leading
Career opportunities Further fields of study	1. 2. 3.	Most graduates go into a range of employment in leading industries such as oil and gas, automotive, manufacturing, pharmaceuticals, jewelry, ceramics, glass, paints, polymers, metals, etc. Jobs are available in many sectors such product/process development scientist, materials engineer, manufacturing system engineer, quality manager, project manager, technical sale engineer, etc. Graduates can work as research assistant in leading
Career opportunities Further fields of study	1. 2. 3. Cor	Most graduates go into a range of employment in leading industries such as oil and gas, automotive, manufacturing, pharmaceuticals, jewelry, ceramics, glass, paints, polymers, metals, etc. Jobs are available in many sectors such product/process development scientist, materials engineer, manufacturing system engineer, quality manager, project manager, technical sale engineer, etc. Graduates can work as research assistant in leading ntinue their studies for higher degree in electrical, chemical d materials engineering, materials science, and related fields

Faculty of Science School of Materials Science and Innovation

Educational philosophy in program management		
Program philosophy	Our primary focus is on educating the learners, as for them	
	to attain academic achievement through learning-centered	
	education, outcome-based education and constructivism.	
	To become a wisdom graduate, learners combine what	
	they have learned so far with the new knowledge, and	
	with experiential learning activities. While the role of a	
	lecturer in the learning process is shift from an information	
	provider to a coach or a facilitator creating challenge-	
Strategy / teaching guidelines	The program is aware of student differences in	
	backgrounds, strengths and weaknesses, interests, and	
	learning styles. Therefore, a range of teaching styles are set	
	through the diverse learning activities according to the	
	learning outcomes including interactive lectures, laboratory	
	practical, individual and group discussions and	
	assignments, active research projects with emphasis on	
	student's demonstration of ideas, logical reasoning, and	
Strategy / student's evaluation	The assessments and evaluations align with the teaching	
guidelines	strategies and the desired learning outcomes such as	
	written and oral examination, practical test, oral	
	presentation, individual or group class participation and	
	project-based research learning. Rubrics based on the	
	objectives of the course are announced clearly and used	
	to score the students' achievement.	

Competences provided to the stu		
Generic Competences 1		Ethics: demonstrate moral and ethical behavior and be
		responsible in their own action including awareness of
		plagiarism
	2.	Critical thinking and analysis: be capable of analytical
		and critical thinking and be able to evaluate both
		general and scientific information with logical and
		systematic thinking
	3.	Creativity: be able to bridge research to innovation
		which further enhance basic knowledge.
	4.	Communication: be able to choose appropriate forms
		of English communication such as listening, speaking,
		reading and writing skills, depending on target audience
		and for academic purposes
	5.	Collaboration: be able to work with others
		appropriately and accept the difference between
		people
	6.	ICT: be able to choose the appropriate information
		technology for searching of information and data and
Subject-specific Competences	1.	Conceptual knowledge in basic science including biology,
		chemistry, mathematics, and physics.
	2.	Conceptual knowledge in materials science and Nano
		engineering including classes of materials and the
		relationship between the scale and the properties of
	2	materials.
	٥.	experience in a wide range of laboratories with laboratory
		and Nano engineering

Graduates' learning Outcomes	
	Solve industrial problems in the field of materials science and
PLO1	nanoengineeering logically by applying interdisciplinary
	approaches.
	Carry out industrial and academic works relating to materials
PLO2	science and nanoengineeering by using appropriate
	instruments and in accordance with international standard
	Create an independent project in material science and
PLO3	nanoengineeering analyzed from scientific journals and
	laboratory reports along with laboratory safety skills and
	professional code of conduct.
	Communicate concepts of material science and nano
PLO4	engineering clearly and purposefully with target audiences
	in English, in both written and oral forms with appropriate
	technologies in an organized manner.
	Work independently and coordinate with others to achieve
PLO5	team goals based on roles and responsibilities of a material
	scientist.

Faculty of Science School of Materials Science and Innovation

Appendix

1. Requirements: Qualifications of lecturers in charge of the program

Namo Surnamo	Educational	Latest Academic Products
Name-Sumame	Qualifications	in the Past 5 Years
Asst. Prof. Dr. Rakchart Traiphol	-Ph.D. (Chemistry),	Potai, R., Faisadcha, K., Traiphol, R.,
	Clemson University, USA:	Traiphol, N. Controllable
	2003 - B.Sc. (Chemistry), Khonkaen University: 1996	thermochromic and phase
		transition behaviors of
		polydiacetylene/zinc(II) ion/zinc
		oxide nanocomposites via
		photopolymerization: An insight
		into the molecular level (2018)
		Colloids and Surfaces A:
		Physicochemical and Engineering
		Aspects, 555, pp. 27-36.
Asst. Prof. Dr. Chayanisa	-Ph.D. (Materials Science	Chitichotpanya, P., Pisitsak, P.,
Chitichotpanya	and Engineering),University	Chitichotpanya, C. Sericin–copper-
	of Rochester, USA: 2004	functionalized silk fabrics for
	-M.Sc.(Materials Science	enhanced ultraviolet protection and
	and Engineering), University	antibacterial properties using
	of Rochester, USA: 1997	response surface methodology (2018)
	- B.Sc. (Chemistry),	Textile Research Journal, 89, pp.
	Chulalongkorn University:	1166-1179.
	1992	
Dr. Pongsakorn Kanjanaboos	-MS-PHD. (Physics),	Boonthum, C., Pinsuwan, K., Ponchai,
	University of Chicago, USA	J., Srikhirin, T., Kanjanaboos, P.
	(2013)	Reconditioning perovskite films in
	-BA (Physics and	vapor environments through repeated
	Economics), Washington	cation doping (2018) Applied Physics
	University	Express, 11 (6), art. no. 065503.

Faculty of Science School of Materials Science and Innovation

Name Surname	Educational	Latest Academic Products
Name-Sumame	Qualifications	in the Past 5 Years
	in Saint Louis, USA (2008)	
Dr. Tanant Waritanant	- Ph.D. (Engineering),	Nadimi, M., Waritanant, T., Major, A.
	University of Manitoba,	Thermal lensing in Nd:GdVO4 laser
	Canada: 2017	with direct in-band pumping at 912
	- M.Sc. (Optics and	nm (2018) Applied Physics B: Lasers
	Photonics), National	and Optics, 124 (8), 170.
	Central University,	
	Taiwan: 2011	
	- B. Eng. (Electronic)	
	Chulalongkorn University:	
	2009	
Dr. Yodchay Jompol -Ph.D. in Physics, Univ		Roche, B., Roulleau, P., Jullien, T.,
	of Cambridge, UK: 2008	Jompol, Y., Farrer, I., Ritchie, D.A.,
	-M.Sc. in Physics, Chalmers	Glattli, D.C. Harvesting dissipated
	University of	energy with a mesoscopic ratchet
	Technology,Sweden: 2001	(2015) Nature Communications, 6, art.
	- B.Sc. (Physics),	no. 6738
	Chulalongkorn University:	
	1998	